Genome size is a strong predictor of cell size and stomatal density in angiosperms.
نویسندگان
چکیده
Across eukaryotes phenotypic correlations with genome size are thought to scale from genome size effects on cell size. However, for plants the genome/cell size link has only been thoroughly documented within ploidy series and small subsets of herbaceous species. Here, the first large-scale comparative analysis is made of the relationship between genome size and cell size across 101 species of angiosperms of varying growth forms. Guard cell length and epidermal cell area were used as two metrics of cell size and, in addition, stomatal density was measured. There was a significant positive relationship between genome size and both guard cell length and epidermal cell area and a negative relationship with stomatal density. Independent contrast analyses revealed that these traits are undergoing correlated evolution with genome size. However, the relationship was growth form dependent (nonsignificant results within trees/shrubs), although trees had the smallest genome/cell sizes and the highest stomatal density. These results confirm the generality of the genome size/cell size relationship. The results also suggest that changes in genome size, with concomitant influences on stomatal size and density, may influence physiology, and perhaps play an important genetic role in determining the ecological and life-history strategy of a species.
منابع مشابه
Genome size scaling through phenotype space.
BACKGROUND AND AIMS Early observations that genome size was positively correlated with cell size formed the basis of hypothesized consequences of genome size variation at higher phenotypic scales. This scaling was supported by several studies showing a positive relationship between genome size and seed mass, and various metrics of growth and leaf morphology. However, many of these studies were ...
متن کاملStomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog?
BACKGROUND AND AIMS Genome size is a function, and the product, of cell volume. As such it is contingent on ecological circumstance. The nature of 'this ecological circumstance' is, however, hotly debated. Here, we investigate for angiosperms whether stomatal size may be this 'missing link': the primary determinant of genome size. Stomata are crucial for photosynthesis and their size affects fu...
متن کاملFerns are less dependent on passive dilution by cell expansion to coordinate leaf vein and stomatal spacing than angiosperms
Producing leaves with closely spaced veins is a key innovation linked to high rates of photosynthesis in angiosperms. A close geometric link between veins and stomata in angiosperms ensures that investment in enhanced venous water transport provides the strongest net carbon return to the plant. This link is underpinned by "passive dilution" via expansion of surrounding cells. However, it is not...
متن کاملGenome size as a predictor of guard cell length in Arabidopsis thaliana is independent of environmental conditions.
The recent discovery of a strong positive relationship between angiosperm genome size and stomatal guard cell length (GCL) opens the possibility of using plant fossil guard cell size as a proxy for changes in angiosperm genome size over periods of environmental change. The responses of GCL to environmental stimuli are currently unknown and may obscure this predictive relationship. Here, we inve...
متن کاملAcclimation to humidity modifies the link between leaf size and the density of veins and stomata.
The coordination of veins and stomata during leaf acclimation to sun and shade can be facilitated by differential epidermal cell expansion so large leaves with low vein and stomatal densities grow in shade, effectively balancing liquid- and vapour-phase conductances. As the difference in vapour pressure between leaf and atmosphere (VPD) determines transpiration at any given stomatal density, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The New phytologist
دوره 179 4 شماره
صفحات -
تاریخ انتشار 2008